# Results
Three of the PBs (climate change, stratospheric ozone depletion, and ocean acidification) remain essentially unchanged from the earlier analysis. Regional-level boundaries as well as globally aggregated PBs have now been developed for biosphere integrity (earlier “biodiversity loss”), biogeochemical flows, landsystem change, and freshwater use. At present, only one regional boundary (south Asian monsoon) can be established for atmospheric aerosol loading. Although we cannot identify a single PB for novel entities (here defined as new substances, new forms of existing substances, and modified life forms that have the potential for unwanted geophysical and/or biological effects), they are included in the PB framework, given their potential to change the state of the ES. ==Two of the PBs—climate change and biosphere integrity—are recognized as “core” PBs based on their fundamental importance for the ES. The climate system is a manifestation of the amount, distribution, and net balance of energy at Earth’s surface; the biosphere regulates material and energy flows in the ES and increases its resilience to abrupt and gradual change. Anthropogenic perturbation levels of four of the ES processes/features (climate change, biosphere integrity, biogeochemical flows, and landsystem change) exceed the proposed PB (see the figure).==
# Conclusion
PBs are scientifically based levels of human perturbation of the ES beyond which ES functioning maybe substantially altered. Transgression of the PBs thus creates substantial risk of destabilizing the Holocene state of the ES in which modern societies have evolved. The PB framework does not dictate how societies should develop. These are political decisions that must include consideration of the human dimensions, including equity, not incorporated in the PB framework. Nevertheless, by identifying a safe operating space for humanity on Earth, the PB framework can make a valuable contribution to decisionmakers in charting desirable courses for societal development.